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Materials & Methods

Bayesian Network development

Bayesian Network (BN) analysis was performed using the UNINET COM library (33) through R
(34). UNINET is designed for high dimensional dependence modeling and multivariate ordinal
data mining using BNs. UNINET supports non-parametric BNs with continuous, discrete, and
functional nodes, and is unique in that it represents conditional dependencies by conditional
rank correlation, using the joint normal copula (46, 47). This approach makes very large and
complex networks computationally tractable. Here we use UNINET in ‘data mining’ mode to
estimate the best-fit network from the input data. The BN parameters are estimated entirely
from data, with no prior assumptions other than specifying the node hierarchy. This dictates
the direction but not the magnitude of influence between nodes (Table S2), which are treated as

continuous variables.

Data handling

Monthly injection records for Underground Injection Control (UIC) wells in Oklahoma (sum-
marized in Fig. 1b; Figs. S1 and S2; Table S1) were obtained from the Oklahoma Corporation
Commission, OCC (35). The primary BN analysis presented here uses records from January
2011 to December 2015 (the most recently available at the time of writing). During the review
process, data for 2016 became available and were used to test both BN forecasting and model
updating.

The majority of active (i.e. reported volume >0 bbl) UIC wells in Oklahoma lie within the
‘Oklahoma induced seismicity zone’ (Fig. 1A and Table S1) (5). Our analysis is restricted to
wells within this zone.

Wells are identified by a unique American Petroleum Institute number (API). There are some

missing or erroneous entries in the records, and we have made every attempt to rectify these. For
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example, there are instances where records with the same API (i.e. pertaining to the same well)
have missing or differing coordinates, some with zero or unfeasibly small depth values, and a
number of duplicate entries (which have been removed). We also note that some APIs appear
to have been modified to accommodate new (neighboring) wells, with extra digits appended.
These records, together with any missing or incorrect coordinates, have been corrected by cross
checking with records from earlier years and the OCC database (35). Any records that could
not be properly resolved have been removed. In some cases, it is unclear if injection records
are incomplete or if injection was suspended for a period—for example, a well with records for
2011-2013 and 2015, but no data for 2014. In such cases, we have assumed that records are

accurate as published. Should OCC issue corrections or additional data the BN can be updated.

Types of class II UIC wells

Our analysis includes class II UIC wells involved in saltwater disposal (SWD) and Enhanced
Oil Recovery (EOR). We developed a test BN to explore the impact of different well types
using all the updated and newly released datasets (2011-16) (35), including an additional node
for well type (1 = SWD well, 0 = EOR well). The conditional rank correlation for well type
and moment release (i.e. the correlation between well type and moment given all the other
operational and spatial variables) was very low (-0.02), suggesting that well type adds very
little information given our present network configuration. Therefore, at present we cannot
resolve what is due to the actual well operation and what is related to local geologic conditions
(faults, permeability etc.), but it is highly probable that the geospatial correction (discussed
below) adequately accounts for such latent factors. One important observation is that individual
SWD injection wells in the studied region inject on average ~1.8 times more than enhanced
oil recovery wells. This is noteworthy given that active SWD wells are also >1.5 times more

likely to be associated with an earthquake than active EOR wells (4). This may be simply due



to the fact that SWD wells are injecting higher volumes, but we stress that depth and location

are important confounding factors.

Description of variables used in the BN

The reader is referred to Table S2 for a complete list of variables used in the BN analysis.
Well depth

Our analysis uses the reported total well depth (node Depth, m). It must be noted that this
does not necessarily correspond to depth of injection—wells can be plugged back, and depth of
injection may change over time. However, total depth is the only measure that is consistently
provided for all wells in the OCC database. For a very small number of localities (insufficient
for our analysis), plug back or actual injection depth is reported.

We restrict our analysis to wells >1 km deep for two reasons—firstly to exclude erroneous
data and secondly to improve forecasting for deeper and higher volume wells associated with
higher seismicity.

In the OCC data files there are numerous records with unfeasibly low depths (zero or tens
of meters). As disposal typically targets deep geologic formations, these do not appear to be
legitimate. From a spot check of several <100 ft wells using the online OCC database, these
records appear to be missing data (no depth recorded) or missing a decimal place. Wells with a
reported depth of 999 ft also appear to correspond to missing data. Without manual checking,
the minimum cutoff to exclude missing or erroneous depths would therefore be 1000 ft or 305
meters.

Deeper (and higher volume) wells are understood to be associated with a greater risk of in-
duced seismicity. We replicated the BN using just records for wells <1 km deep, and observed a
very weak correlation between well depth and [og,, annual moment release (empirical rank cor-

relation of 0.006), and monthly volume and log;, annual moment release (-0.002), supporting



the argument that these wells have a considerably lower impact on seismicity.
Basement depth

Basement depth was estimated by performing a surface interpolation (regularized spline
with tension, using the GRASS GIS function v.surf.rst) using records of 1232 wells drilled into
the crystalline basement (39). The resulting raster map of approximate basement depth (Fig.
S5) was sampled at each UIC well location to calculate well depth relative to basement (node
Depth_rel_InterpB, m) and the absolute distance from the bottom of the well to the basement
interface (node dist Basement, m, this is always positive). The accuracy of this interpolation
will vary spatially due to variable data coverage across the state. However, the strong correlation
observed between moment and these two measures (particularly distance to basement, see Table
S5) suggests that the basement estimate is reasonably accurate in the area of interest, and that
there is valuable information in these parameters.

Volume

For each well report, records of monthly injected volume (node V olume, bbl/month) were
used to calculate total injection over the past year (node V sum_1y, bbl/year), and cumulative
volume for every month of operation (node CumV olCalc, total bbls injected up to the given
report date).

We then filtered the records to omit cases with injection <10,000 bbl/m. Our analysis fo-
cused on wells that are or could be subject to regulation in the future, and we removed cases
when the injection rate (or depth, see above) means that they are not, or are very unlikely to
be, related to earthquake activity. This is evidenced by low correlations for volume and log;
moment computed for records <10,000 bbl/m only (an empirical rank correlation of 0.001).
For these very low volume wells, local seismicity is likely to be influenced to a much greater
extent by the contribution of neighboring wells (particularly high-volume, deeper wells). Elimi-

nating cases that are very weakly correlated with seismic moment release (and as a result, many



low/zero moment cases) improves forecasting performance for the higher volume/deeper wells.

We have only omitted individual cases (monthly reports) where injection is <10,000 bbl, so
a well is only completely excluded from the analysis if it never injected over 10,000 bbl/month
in the study period. Injection <10,000 bbl/month still contributes to annual and cumulative
volumes. The regulatory threshold for Oklahoma is 15,000 bbl/day (~450,000 bbl/month) (25)
so our cutoff still includes injection at the lower end of the scale.

Earthquake activity close to any given well could be due in part (or whole) to injection from
nearby wells. However, evaluating the potential contribution of neighboring wells is difficult,
as injection depth and volume appear to be jointly important. We ran a number of tests using
a range of variables to represent external inputs (including the number of active neighboring
wells, and total volume injected within different radii and depths). All the nodes tested provided
very little additional information (low empirical and conditional rank correlations) and did not
improve forecast performance. However, we note that it is very difficult to deal adequately with
the effect of depth (and basement depth) when evaluating the effect of the total injection within
a given area. This would necessarily involve some heavy discretization and approximation.

The geospatial correction node will to some extent capture the impact of well density, and
spatial variation in total injection and depth.

Seismic moment release

Earthquake depth and magnitude data were obtained from the Advanced National Seismic
Systems’ (ANSS) Comprehensive Earthquake Catalog, ComCat (36). We investigated the min-
imum magnitude of completeness (M ,.) for earthquake data for the Oklahoma induced seismic-
ity zone from 2011-2016, and a more recent subset of data (2015-2016), using the approach of
Wiemer and Wyss (48). We found that the M, for 2011-2016 is 2.50 £ 0.025 (1 s.d.) and for
2015-2016is 2.52 + 0.039 (1 s.d.) (Fig. S4).

Catalog incompleteness means moment is censored, and the distribution for total annual



moment release is not smooth at small values. To handle this, we applied a minimum threshold
of 1e13 Nm (assigning this value to all cases with annual moment <1el3 Nm), approximately
equivalent to one M, 2.6 event. This truncated distribution forestalls any effect of missing small
events below the threshold of completeness. We also stress that our models used total seismic
moment release, which is predominantly determined by larger events, thus catalog completeness
becomes a marginal consideration and has very little effect on the results.

A modified version of rcomcat (49) was used to search the database for earthquakes (M, >
2 and <10 km deep) within 20 km of each disposal well. For each individual record we then
calculate [mom_1y, the total moment released in a radius of 20 km in the following year. Other
studies encompassing the CEUS use a 15 km ‘distance of association’ (4), which sums the 5 km
radius traditionally regarded as induced (50) and the estimated 10 km spatial uncertainty in the
earthquake epicenter location (57). Our limit is intended to capture earthquake swarms (e.g. the
Jones swarm) that are known to occur within 20 km of high-rate disposal wells (3). McGarr and
Barbour (37) concluded that for the 2016 Fairview, Pawnee, and Cushing earthquakes, 10 km
was the minimum distance required to capture seismic moment release and the injection volume.
We performed additional tests focusing on a smaller region (around Prague) to evaluate the rank
correlation coefficients for injected volume (monthly, annual and cumulative) and total annual
moment release using varying radii from 5-35 km. These showed the strongest correlations at
distances of 15-20 km—further supporting this choice of radius.
Geospatial correction

The geospatial correction is one of a class of statistical modeling constructs known as “latent
variables”. Such a variable is not directly observable or observed, but can be inferred and char-
acterized by analyzing the variance and covariance of related effect indicators. Latent variables
are often used in, e.g., in Hidden Markov processes, mixed effect/multi-level, or regression

equation modeling; a latent variable also has a structural role in causality (52). The geospatial



correction factor likely accounts for multiple physical processes or rock properties that are not
determinable at the scale of individual wells, including: pore pressure differential; fault friction;
strata permeability, porosity, hydraulic diffusivity; shear modulus, Poisson’s ratio; poroelastic
and other rheological properties.

The geospatial correction is obtained by generating a kernel density map of the forecast er-
ror produced by the first stage (non-spatial, 7-node) BN. This network is learned using a subset
of the training data, then used to estimate seismic moment for the remainder of the training
data. The resulting forecast error (i.e. the difference between the observed and forecast seis-
mic moment) is used to generate the kernel density, giving a measure of regional under- or
over-forecasting. We then take point samples from this geospatial correction map (Fig. S8) to
estimate the appropriate correction variable for each individual well, using this sampled value
as a ‘new’ node in the second stage, 8-node geospatial BN (Fig. 2). Fig. S8 shows the geospa-
tial correction map for the unsaturated BN (using the Test 2 training dataset). This procedure
was repeated to generate equivalent corrections for both the saturated BN and linear regression
model. We note that all three models give a very similar spatial distribution, and that a similarly
large improvement was seen in the regression model after incorporation of this latent variable.
Updating the geospatial correction (see section on forecasting using 2016 data, at the end of

this supplement) also appears to partially accommodate temporal changes in the system.

Analysis of the BN: Model performance, influence of geospatial correction
and node hierarchy

Tests were performed using the saturated BN (structure shown in Fig. 2A) to explore the strength
of correlation between variables, and the effect of the geospatial correction on model perfor-
mance. Test 2 data were used for learning, and a random sample of 16,000 cases from the

learning set used to test performance (see Table S3, in-sample test).



Fig. S9 shows a scatter plot of forecast versus observed annual moment release for the satu-
rated network and regression models with no geospatial node. It can be seen from the CDF and
RMSE values (Fig. S9B and table inset in S9A) that the BN performs better than the regression,
but that neither model is particularly good, particularly for cases with high moment release.
Fig. S9C shows that the conditional standard deviation of moment release (the uncertainty in
the forecast) is strongly dependent on expected moment release.

Both the BN and regression model show a marked improvement with inclusion of the
geospatial correction, and this can be seen in the scatter plots and RMSE (compare Fig. S10
A and Fig. S9A). Fig. S10C shows that the conditional standard deviation of moment release
(the uncertainty in the forecast) still varies strongly with expected moment release but is slightly

lower than for the network without the geospatial correction.

Correlations and inferred effects of depth and volume on seismic moment release for in-
dividual wells

Table S5 presents the unconditional rank correlations calculated using UNINET for (i) the em-
pirical data; (ii) the saturated BN; (iii) the unsaturated BN; and (iv) the linear regression cor-
relation coefficients. The empirical rank correlation coefficients show that after the geospa-
tial correction, the distance from the bottom of the well to the estimated basement interface
(dist Basement) is the variable most highly (negatively) correlated with seismic moment re-
lease (rank correlation coefficient of —0.34 for the empirical data and saturated BN, —0.32 for
the unsaturated BN). This suggests there are more, and/or larger magnitude earthquakes asso-
ciated with wells that terminate close to the sedimentary cover—basement interface. This can
also be seen in the empirical probability distributions for depth relative to basement and dis-
tance to basement (Fig. S7), where we compare the probability density for cases with no or
low seismicity (log;o annual moment <13, shaded blue) with relatively high seismicity cases

(log1p annual moment >15, shaded pink). The distributions show multiple peaks and troughs as
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the data are non-Gaussian and granular, but the overall shift is clear. The probability densities
for both distance to basement and depth relative to basement for high seismicity (log,o annual
moment >15) both peak close to zero (corresponding to wells approximately at the basement
interface) and are much narrower than the equivalent distribution for low/no seismicity.
Cumulative volume has an empirical rank correlation of +0.26—suggesting a higher de-
gree of influence on moment release than either annual injection (empirical rank correlation
of +0.20) or monthly volume (empirical rank correlation of +0.18). This could be indicative
of a relatively long time lag associated with increased fluid pressure and stress accumulation
on faults, at least in some areas. Again, all the probability distributions for volume (monthly,
yearly and cumulative, Fig. S7) show that higher volumes are associated with higher seismic

moment release, with cumulative volume showing the most distinct shift.
Influence of node hierarchy on conditional rank correlation

The empirical and unconditional BN rank correlations (Table S5) show distance to basement to
be the single well parameter with the strongest influence on moment release. However, these
unconditional rank correlations do not account for confounding effects of other variables and
are a therefore a relatively crude indicator of importance.

Partial (or conditional) rank correlations given all other covariates take account of con-
founders, and therefore provide a measure of the additional information provided by that node
alone. For example, the partial correlation of (x,y) given u, v, w takes account of confounding
by u, v, w; i.e. the influence between x, y that is not caused by u, v, w. The partial correlation
of (x,y) given v, w therefore takes account of confounding by v, w, but w is still a potential
confounder. The absolute rank correlation of (z, y) does not account for the confounding effect
of any other variables.

Table S4 gives partial rank correlations for two alternative node hierarchies, showing that
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node order has little effect on the strength of correlation for the distance to basement node, and
it remains the highest correlated variable. The partial correlation for distance to basement and
Imom;yy given all other depth and volume variables is -0.28 (compare with the absolute rank
correlation of -0.34, Table S5). The effect of confounders (at least in terms of the variables in
our network) on the influence between distance to basement and [mom,y is therefore relatively
small.

The non-parametric BN representation captures the joint distribution of a child node and its
parents in terms of a set of conditional rank correlations or equivalently (in the presence of the
Gaussian copula) partial rank correlations. If node variable W has parents X, Y, Z, then with
the margins of W, X, Y, Z, and conditional on all parents of X, Y, Z, the joint distribution of W,
X, Y, Z is completely specified by specifying the partial rank correlations:

(W, X), r(W, Y | X), t(W, Z | X, Y).
These partials are algebraically independent: they may be chosen independently in the interval
(-1, 1).

The same distribution could be specified by giving:
L. t(W,Y), (W . X|Y,X), r(W,Z|X,Y)or
2. t(W,Z2),t(W,Y | Z), t(W, X | Z, Y), etc.

In the latter sense, the ordering in the hierarchy is unimportant. However, it is important if
we are interested in specific variables and their potential confounders. Then, in respect of the
relation between W and X, say, we should choose option (2) to get the relation between W and
X which is not confounded by the influence of Z and Y. If we are interested in the relation W, Y,
then we should choose (1). However, this issue is purely cosmetic as (1) and (2) specify exactly
the same joint distribution. The difference is that the unconfounded relation of (W, Y) can be

‘seen’ in the first, and the unconfounded relation of (W, Z) in the second.
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Training and testing datasets

We test the models with two alternative subsets of the data to evaluate performance, illustrate
how the BN could be used operationally (Fig. S11), and also to investigate how the model
responds to the changing trend of injection seen in 2015. The number of cases used for learning
and testing or forecasting in each instance (including the number of large moment cases) are
given in Table S3.

Test 1 demonstrates how the BN can be used to forecast ‘ahead’, learning with the first phase
of observations from January 2011-June 2015, and forecasting for the period July—-December
2015. This phase is interesting, as from 2011-2014 annual injection steadily increased, but
began to decline at the start of 2015 (Fig. S1). The reduction in injection can be attributed to
the introduction of more stringent regulations, and falling (US) oil production volumes due to
low oil prices.

Test 2 uses 90% of the full dataset (randomly sampled, from January 201 1-December 2015)
for learning, and the remaining 10% for forecast verification. Predicted moment is then com-
pared with observations (for both BN and regression models) to assess how well the models

perform.

Performance of alternative network configurations

We present results for two different network configurations: (i) a saturated network (Fig. 2A),
where the network is ‘complete’, i.e. there are links between every pair of nodes (no enforced
conditional independence); and (ii) an unsaturated network (Fig. 2B), which allows conditional
independence between certain parameters.

The saturated BN gave the most complete representation of all the observed data under sta-
tionary conditions, and therefore initially appears to better represent the dataset as a whole.

Using the Test 2 dataset (where the test data are effectively drawn from the same statistical
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population as the learning data) the saturated BN gave the lowest RMSE (Table S6), and the
saturated BN rank correlation coefficients for Imom_1y were closest to the empirical rank cor-
relations (Fig. 2C).

In an operational or regulatory setting it is necessary to make projections for the future,
under potentially quite different conditions (e.g. assessing the potential impact of new wells, or
restricting injection rates). Under certain changing conditions, the saturated BN can produce
‘unphysical’ results, and it is necessary to remove links between the volume nodes to enforce
physically realistic constraints on dependencies between the variables. Test 1 (and our addi-
tional updated forecast using provisional injection data for 2016, presented at the end of this
supplement) are examples of forecasting ahead, where the test dataset is statistically quite dif-
ferent to the learning set — in this case, both as a result of the changing injection regime and a
proportional increase in the number of cases with higher moment release (see Table S3).

The trend of increasing injection from 2011 to end 2014 results in strong (and dominant)
correlations between cumulative, annual and monthly injection volumes in the saturated net-
work (Table S5). When injection rates fell at the end of 2015, these correlations changed and
as a result the saturated network performs significantly less well than both the unsaturated BN
and regression models. The unsaturated BN, which enforces conditional independence be-
tween cumulative, annual and monthly injection, gives the best performance, with the lowest
RMSE, MAE and MAD (Table S6). This can also be seen in the CDF plots for the unsaturated
network—the BN median estimate very closely follows the observations (Fig. S12C).

Removing the links between the volume nodes in the unsaturated BN is therefore a way to
(partially) compensate for the injection regime changes of 2015 (see Fig. S1). As such this is
a more reliable model for ongoing forecasting, future regulatory assessment or quantifying the

impact of new wells.
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Quantitative assessment of depth and volume regulation

(i) Reducing injection depth by 1000 m

This is a simple assessment of a fixed change in depth, using the unsaturated BN with no
geospatial node (i.e. a ‘generic’ case, focusing on the joint effects of well and basement depth
and volume, excluding the confounding effects of location-specific geologic features). This
analysis uses a subset of 10% of the well records, randomly selected to provide a representative
sample of real operating depths and injection rates across the Oklahoma induced seismicity
zone. For each record, well depth was reduced by 1000 m and the corresponding depth relative
to basement and distance to basement re-calculated. The BN was then used to generate mean

estimates of moment release using both the original and reduced depths (Fig. 4A and Fig. S14).
(ii) Capping injection volume

Here we evaluate the impact of a daily (or monthly) cap on injection volume, using a regulatory
limit of 15,000 bbl/day (~450,000 bbl/month). Records used in this example are cases of high
injection only (where monthly injection was reported as exceeding 450,000 bbl/month—a total
of 2,015 records). We are therefore only comparing moment estimates for those months where
the cap would be in effect. Again, this is a ‘generic’ example, using the unsaturated BN with

no geospatial node.
(iii) Statewide impact of limiting injection depth relative to the basement

Here we demonstrate how the BN can be applied to quantify the expected change in annual
seismic moment release if well depth is restricted to either (i) 200 m or (ii) 500 m above the
basement (where the basement interface is deep enough for this to be practically enforced).
Here we apply the unsaturated BN with the geospatial node to model observed spatial variation

across the Oklahoma induced seismicity zone. This provides an indicative estimate of the total

14



annual change in moment in the zone.

Using a single month of well records (December 2015), the BN is used to predict total
annual moment release within 20 km of each well, injecting at its current depth. Wells with
a depth relative to basement of less than 200 m are then moved upwards to 200 m above the
basement. To ensure a sensible range of injection depths, depth is only modified if the basement
1s 700 m or lower—this results in a minimum well depth of 500 m and means a small number of
wells remain within 200 m of the basement. For the 500 m limit, any well with a depth relative
to basement of less than 500 m is set to 500 m, if the basement is 1000 m or lower. This gives an
indicative reduction in total annual moment release for the Oklahoma induced seismicity zone

of a factor of ~2.8 for the 500 m limit, and a factor of ~1.4 for the 200 m limit.

Comparison of Gaussian and optimal copulae using AIC

UNINET uses joint normal copulae to represent conditional dependencies between variables,
as conditioning can be performed analytically (this is not possible for many copula families).
The moment node, lmom,y is censored (due to catalog incompleteness below M, 2.5; Fig. S4)
and very skewed, which means that the joint normal copula can only approximate the original
data. To investigate how significant this limitation is, the R package VineCopula (53) was
used to calculate AIC (Akaike Information Criterion) for alternative models using (i) Gaussian
and (ii) optimal copulae. The lower the value of AIC the better the model. For a given set of
observations, the function RVineStructureSelect() searches for the optimal structure and copulae
(from the full set of bivariate copula families provided in the R VineCopula package (53)), using
AIC as the scoring metric.

Using the training dataset (90% of the full set of observations, randomly sampled, Fig.
S11) and 8 variables (including the geospatial correction) the Gaussian model gives an AIC

of —1975573, and the model using optimal copulae a slightly lower AIC of —2067686. For
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comparison, AIC for the regression model (again with 8 variables and the same input dataset) is
significantly higher at —71063.5. We note that the Gaussian copula is the only one that enables
rapid conditionalization on arbitrary sets of conditioning variables. Given the relatively small
improvement in AIC, non-Gaussian alternatives did not seem worth pursuing here. Cooke et al.

(54) provide a detailed illustration of vine regression, using both Gaussian and optimal vines.

Testing the BN using new data

A distinct advantage of the BN as an operational tool is the ability to update the model, and
produce revised forecasts as new data become available. During the review process for this
contribution, injection data for 2016 were released by the OCC (35). This provided an opportu-
nity to test our model using a new dataset. We note that these test data for 2016 are preliminary,
and require further checks to ensure data reliability and consistency. For example, around 1000
wells have revised API numbers (to accommodate new wells). We have (conservatively) elim-
inated any cases where individual well API and location could not be uniquely resolved and
traced back over the full reporting period.

Here we present two examples of forecasting using injection records from January to Septem-
ber 2016 (as the BN estimates seismic moment release in the year ahead, i.e. up to end Septem-
ber 2017). The first example uses the original model and geospatial correction derived from
2011-2015 records (Fig. S16). Updated calculations of the empirical and BN unconditional
rank correlations for moment release using the updated dataset show relatively small changes
in the correlations with the addition of the 2016 data (see Table S7, and Table S5 showing the
original correlations for the 2011-15 data), giving confidence in our original findings.

Secondly we demonstrate how temporal changes in the system can be partially accommo-
dated by updating the geospatial correction and using a moving window for learning (Fig. S17),

improving forecast performance. This is a more tractable alternative to a fully dynamic BN.

16



The forecasting window

The BN uses a ‘rolling’ window for forecasting, enabling a year ahead forecast to be generated
at any point in time. This also accommodates (to some extent) uncertainty/variation in lags
between injection and induced seismicity.

With the time window adopted for forecasting, there is necessarily some overlap of monthly
forecasts. Thus, when testing ability to forecast ahead, there is also some overlap in the earth-
quake records used to calculate total moment in the training and testing datasets. To demonstrate
that this overlap does not artificially increase forecast performance, we calculated the variation
in forecast error over time for 2016 (Fig. S18). This example used injection data from January
2014 to December 2015 to learn the network (see Fig. S17), and a geospatial correction calcu-
lated from the previous forecast for 2015 (Fig. S12), reflecting an update to the original network
and geospatial variable. Boxplots (Fig. SI8A-B) show monthly forecast residuals (forecast —
observed log;p moment) for both the BN and the regression model for January to September
2016. The test set comprised a total of 11,000 individual records (~1250/month) forecasting
moment release for the year ahead, so including activity to end September 2017. This test shows
that the various measures of forecast error (RMSE, MAE and MAD, Fig. S18C-D) remain rel-
atively constant.

The length of overlap between the time windows used to sum moment release in the learning
set (January 2014 to December 2016) and the 2016 testing set (January 2016 to September 2017)
decreases with time. If this were a major contributory factor to model forecast ‘skill’, the errors

could be expected to increase with time: this is not observed.
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Supplementary Figures
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igure S1: Seismic and UIC injection records for Oklahoma | (A) Monthly number of M,
> 3 earthquakes and total moment release (log;, Nm) for M, > 2 earthquakes for 1976-2017
(36). Note that since mid-2015, count has dropped—but total moment remains high—implying
fewer but large earthquakes. (B) Total monthly injection volume (black) across the State of
Oklahoma for 2011 to end 2016 (35), and monthly total seismic moment release (red, M, > 2)
for Jan 2011 to Sep 2017 (36). The shaded area highlights the time period of injection from Jan
2011 to Dec 2015 used in the primary BN analysis. Preliminary injection records from Jan to
Sep 2016 were used to perform additional tests of forecasting ability and to demonstrate model
updating (Figs. S16 and S17). Annual injection volumes are provided in Table S1.
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Figure S1: Seismic and UIC injection records for Oklahoma
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Figure S2: Annual wastewater injection and seismicity in Oklahoma | Maps show the total
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kernel, and total seismic moment release (Nm) from 2011-2016 (36), using a 20 km radius
Gaussian kernel. 19
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Figure S3: Depths of Oklahoma earthquakes from 1976-2017 | Depth histograms of earth-
quakes (M,, > 2) from January 1976 to June 2017 (36), showing (A) frequency (count) and (B)
total moment release. For the lower two plots, depth is calculated relative to the (estimated)
basement interface (see Fig. S5).
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Figure S4: Minimum magnitude of completeness (1/.) in the Oklahoma earthquake cat-
alog | M. (denoted by the solid vertical line) was calculated using the method of Wiemer and
Wyss (48) for earthquake data from the Oklahoma induced seismicity zone from (A) 2011-
2016, and (B) a smaller subset from 2015-2016. Cumulative and non-cumulative frequency-
magnitude distributions are shown. The M. 95% confidence intervals are also plotted as vertical
dashed lines (labeled).
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Figure S5: Depths to the basement interface across the State of Oklahoma | This compi-
lation includes 1232 depth records of wells drilled to crystalline basement (igneous and meta-
morphic lithologies) from Oklahoma Geological Survey (39). Basement depths were estimated
using a surface interpolation algorithm (regularized spline with tension) in QGIS (38), and are
relative to surface elevation. A total of 335 depth records are within the ‘Oklahoma induced
seismicity zone’ (5), shown as a black polygon.
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Figure S6: Oklahoma crystalline basement geology and depths of earthquakes relative to
the basement interface | This region lies in the northern part of the Oklahoma induced seis-
micity zone (5) (see inset). Basement geology is modified after Shah & Keller (9) and is based
on a combination of gravity, magnetic and drill core data. Histograms show the frequency of
earthquakes (M, > 2) for the period 1976 to June 2017, and are calculated relative to the (es-
timated) basement interface (see Fig. S5), with negative numbers referring to depths below the
basement interface. Note that each histogram corresponds to a discrete basement lithology, and
assumes that geologic boundaries are vertical. It can be seen that seismicity is largely confined
to the Central Oklahoma Granite Group and mid-continent rift igneous rocks (9), where it is
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largely focused between 0—10 km below the basement interface (Fig. S3).

23



1.25 1
log,, annual
moment (Nm)
1.004 0.0015 A
|:| <13
> 0.751 > []=5
= £ 0.0010+
c c
S 0501 3
0.0005 -
0.25
0.00 0.0000 -
40 45 50 55 60 65 2000 4000 6000
log,, volume (bbl/month) Well depth (m)
1.00 4
0.754 0.0010-
2 2
2 0.50- 2
(] (0]
© T 0.0005-
0.254
0.00 0.0000+
4 5 6 7 -2000 0 2000 4000
log,, volume (bbl/year) Depth relative to basement (m)
0.0020 -
0.6
0.0015 -
= =
‘B 0.4+ D
S g 0.0010+
o o
24
0 0.0005 -
0.0 ] ] | . 0.0000 -
4 5 6 7 8 0 1000 2000 3000 4000
log,, volume (total bbl since 2011) Distance to basement (m)

Figure S7: Probability distributions for BN input variables | Probability distributions for
each of the BN input variables for January 2011 to December 2015 identifying (i) cases with
low or no seismic activity (log;p moment in 1 year < 13; density shaded blue) and (ii) cases with
relatively high seismic activity (log;p moment in 1 year > 15; density curve shaded pink). This
shows that wells drilled closer to the basement and injecting greater volumes (over monthly,
yearly and longer timescales) are associated with higher seismic moment release. Note: ‘Cu-
mulative volume’ is only summed over the period for which injection data were available at the
time of writing (2011 to end 2015) so here we present injection over a maximum of 5 years.
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Figure S8: Geospatial correction—mapping forecast error | The geospatial correction is
obtained by generating a kernel density map of forecast error, using a 30 km Gaussian kernel.
We define the error as simply the difference between the BN mean estimate and the observed
moment release (in units of log;o Nm). This map shows the geospatial correction obtained from
the first stage of forecasting using the unsaturated BN (Fig. 2B) and the Test 2 dataset (see Fig.
S11). Note that red corresponds to areas where the first stage model initially under-forecasts and
blue to areas where it over-forecasts moment release, e.g. due to geologic features or conditions
that the network does not account for. Mapped faults are also shown (42); note that larger fault
systems (e.g. Nemaha, Fig. 1C) appear to compartmentalize areas of under-forecasting.

25



>

18
L

o BN mean estimate
+ Linear regression

17
L
+ 4+

16
|
+
-

¥
i

P

Hpt ﬁ o RMSE  MAD
$ Bayesian Network 0.932 0.750
% Linear Regression 0.959

14
I
o ot T

Forecast log,, annual moment release (Nm)
13 15
|
b

12
L

0.784

13 14 15 16 i 18
Observed log,, annual moment release (Nm)
B -
Observations
(-]
& |
£
Vi o
o o
2
t .
e Linear
- ;
o 34 regression
o
o
o
o BN mean
=
T T T T T T
13 14 15 16 17 18
C log,, annual moment release (Nm)
s

=

1.2

1.0

0.6
|

Conditional standard deviation
0.4 0.8
1

—— BN
— Linear regression

0.2

T T T T T \
13 14 15 16 17 18
Expected log,, annual moment release (Nm)

Figure S9: Test 2 with no geospatial correction variable | (A) Scatter plot showing forecast
versus observed annual moment release for the in-sample test, using 16,000 cases drawn at ran-
dom from the Test 2 dataset (see Table S3). No geospatial correction is used. Inset table shows
the RMSE and MAD values for the BN and linear regression. (B) CDFs for the saturated BN
and linear regression. (C) Conditional standard deviation of expected annual moment release
for the BN and linear regression. 26
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Figure S10: Test 2 with geospatial correction variable | (A) Scatter plot showing forecast
versus observed annual moment release for the BN and regression model (both with geospatial
correction). This is an in-sample test, using 16,000 cases drawn at random from the Test 2
dataset (see Table S3). Inset table shows the RMSE and MAD values for the BN and linear
regression. (B) CDFs for the saturated BN and linear regression. (C) Conditional standard
deviation of expected annual moment release for the BN and linear regression.
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Figure S11: Schematic illustration of the two datasets used for forecast verification | Test 1
uses the complete set of well records for the Oklahoma induced seismicity zone from January
2011 to June 2015 to perform the learning step, and forecasts moment for July—December 2015.
Forecast verification is then carried out to evaluate how well the models perform forecasting
ahead. In an operational situation, the BN could be used in this way to forecast future seismic
hazard, using current or projected injection rates and depths for a specific well or region. Test
2 uses 90% of the records from the full dataset (January 2011 to December 2015) sampled at
random for learning, and the remaining 10% for forecast verification. This is used to determine
how well the BN (or regression) can model seismic moment release over the past 5 years.
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Figure S12: Scatter and CDF plots comparing the performance of the unsaturated
Bayesian Network and linear regression (Test 1) | (A) Unsaturated BN structure. Injection
rates declined in 2015, resulting in changes in relationships between cumulative, annual and
monthly volume. By removing links that are no longer valid (in this case, due to the changing
injection regime) the unsaturated network performs better when forecasting ahead under non-
stationary conditions. (B) Scatter plot showing forecast versus observed moment release for
the period June to December 2015, for the unsaturated BN and regression model. Both mod-
els under-forecast cases of very high moment release, although the BN performance is clearly
better. RMSE, MAE and MAD are provided in Table S6. (C) CDFs of [og,y annual moment re-
lease for the BN (mean and median estimates), linear regression, and empirical data. Empirical
and unconditional rank correlation matrices and regression coefficients are provided in Table
S5 (see Fig. 2 and Fig. S13 for Test 2 results).
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Figure S13: Scatter and CDF plots comparing the performance of the saturated Bayesian
Network and linear regression (Test 2) | (A) Saturated BN structure. The saturated BN models
all dependencies between variables, and performs best under stationary conditions. (B) Scatter
plot showing forecast versus observed moment release for Test 2 (see Table S3 for description
of the learning and testing datasets), for the unsaturated BN and regression model. Again,
both models under-forecast cases of very high moment release, although the BN performance
is better. RMSE, MAE and MAD are provided in Table S6. (C) CDF for the saturated network
(Test 2). Empirical and unconditional rank correlation matrices and regression coefficients are
provided in Table S5.
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Figure S14: Simulated effect of increasing injection well depth | Taking a random sample
of well records (10% of the full dataset), well depth is increased by 1000 m (i.e. deeper). This
modified input is used to generate estimates for annual moment using the BN (in this case, using
the simple unsaturated network with no spatial correction node) and linear regression models
(black points). The plot shows the change in annual moment versus original well depth (see Fig.
4A for further details). The scatter (here and in Fig. 4) is due to the fact that the BN captures
conditional dependency—although only the depth variables are changed, the effect of injection
volume on moment release is conditional on depth. The linear model predicts the same change
in moment regardless of volume (assuming volume is not changed).
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Figure S16: Forecast verification (unsaturated BN, original geospatial correction) using
injection data for 2016 | (A) Scatter plot showing forecast versus observed annual moment
release for January to September 2016 for both BN and regression models. The BN forecast
was generated using the unsaturated BN (structure shown in Fig. S12), learning with data from
January 2011 to December 2015 and original geospatial correction (Fig. S8). (B) CDFs of
log1o annual moment release for the BN (mean and median estimates), linear regression, and
empirical data. BN (mean) RMSE: 0.86; Linear regression RMSE: 0.79.
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Figure S17: Forecast verification (updated BN and geospatial correction) using injection
data for 2016 | (A) Scatter plot showing forecast versus observed annual moment release for
January to September 2016 for both BN and regression models. The BN forecast was generated
using the unsaturated BN (structure shown in Fig. S12), learning with data from January 2014
to December 2015 and an updated geospatial correction. (B) CDFs of [og;q annual moment
release for the BN (mean and median estimates), linear regression, and empirical data. BN
(mean) RMSE: 0.73; Linear regression RMSE: 0.76.
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Figure S18: Change in BN and regression forecast error for the 2016 test dataset | (A) BN
mean forecast residuals, and (B) regression model forecast residuals; learning using monthly
records from January 2014 to December 2015 and forecasting annual moment release in the
year ahead from January to September 2016. Both models use an updated geospatial correction
(based on the 2015 forecast). The box hinges show the first and third quartiles, the middle line
denotes the median, whiskers extend to the point no more than +1.5 times the interquartile
range from the box, and the circles denote outliers beyond the whiskers. (C) RMSE BN (mean,
red line) and regression (blue line) forecast. (D) MAD BN (mean) and regression forecast. (E)

MAE BN (mean) and regression forecast.
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Supplementary Tables

able S1: Injection well data | Summary of injection well data (35) for the State of Oklahoma
and the Oklahoma induced seismicity zone (Fig. 1), showing the total annual injected volume
(bbl/year) and the total number of active wells (where injected volume > 0 bbl). fPlease note
that injection data for 2016 are preliminary.

Year Total injected vol. (bbl/yr) Number of active wells

State of Oklahoma

2011 1.84E+09 7923
2012 2.14E+09 8576
2013 2.40E+09 8793
2014 2.64E+09 8755
2015 2.61E+09 8925
2016 12.09E+09 17338
Oklahoma induced seismicity zone (USGS)

2011 1.44E+09 5552
2012 1.76E+09 6368
2013 2.02E+09 6543
2014 2.27E+09 6618
2015 2.24E+09 6658
2016 71.86E+09 15811
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Table S1: Injection well data



Table S2: Nodes used in the BN analysis | Note that total moment release is calculated for M,
> 2 earthquakes < 10 km deep.

BN node BN node description

Volume Monthly injection volume (bbl)

Depth Total well depth (m)

Imom_Iy Total moment release (log;o Nm) within 20 km of the well, within 1 year ahead

Depth_rel_InterpB  Well depth (m) relative to estimated basement interface: +ve (above) or -ve (below)

CumVolCalc Well cumulative volume (bbl)

Vsum_1y Total injected volume over the past year only, for a particular well (bbl/year)
distBasement Absolute distance from the basement interface (m)

SATdiffmean Geospatial correction node for the saturated model

UNSATdiffmean Geospatial correction node for the unsaturated model

LRdiffmean Geospatial correction node for the linear regression model
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Table S3: Number of cases for learning and training | Table shows the total number of
individual monthly records for all wells (i.e. a total of 2,897) used in the BN analysis. Test 1—
learning with records from January 2011 to June 2015, forecasting July to December 2015. Test
2—Ilearning with a random sample of 90% of records from January 2011 to December 2015;
forecasting with the remaining 10%. In-sample test—uses the Test 2 dataset (95,673 case) for
learning, and a random sample of 16,000 cases drawn from the learning set to visualize results
(see Fig. S11). Cases with Imom_ly > 16.5 are in the tail end of the distribution used for
learning the network. Forecasting ahead (Test 1) the network learns with just 0.5% of cases
with [mom_ly > 16.5; but the forecast verification data (July to December 2015) has 2% of

cases with lmom_ly > 16.5.

Total cases Imom_1y>16 Imom_1y>16.5
Test 1 learning 94,905 5,235 5.50% 513 0.50%
Test 1 forecasting 11,399 1,011 8.90% 225 2.00%
Test 2 learning 95,673 5,635 5.90% 672 0.70%
Test 2 forecasting 10,631 611 5.70% 66 0.60%
In-sample testing 16,000 965 6.0% 116  0.7%
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Table S4: Effect of node hierarchy | Investigation of the effect of node hierarchy on conditional
rank correlation for the distance to basement and [og;yp moment nodes (this example uses the
saturated BN, Test 2 data, 90% of full dataset). Given all other covariates, the conditional rank
correlation for distance to basement and log;; moment remains the highest, and changes very
little under the alternate ordering (see Table S2 for definitions of variables).

Conditional Rank Correlation Coefficients Value

Depth Imom_1ly 0.16587
Depth _rel_InterpB Imom_ly | Depth -0.13467
distBasement Imom_1y | Depth Depth _rel_InterpB -0.29804
Volume Imom_ly | Depth Depth_rel_InterpB distBasement 0.11851
Vsum_ly Imom_ly | Depth Depth_rel_InterpB distBasement Volume 0.11246
CumVol Imom_1ly | Depth Depth_rel InterpB distBasement Volume Vsum_ly 0.16238
Conditional Rank Correlation Coefficients—alternate hierarchy Value

Depth Imom_ly 0.16587
Depth_rel_InterpB Imom_1y | Depth -0.13467
Volume Imom_1y | Depth Depth_rel InterpB 0.16293
Vsum_ly Imom_ly | Depth Depth _rel_InterpB Volume 0.11764
CumVol Imom_1y | Depth Depth_rel_InterpB Volume Vsum_ly 0.14722

distBasement Imom_1y | Depth Depth _rel_InterpB Volume Vsum_1y CumVol -0.28354
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Table S6: Errors for the BN and regression models | Root mean squared error (RMSE),
mean absolute error (MAE), and median average deviation (MAD) for the BN and regression
models using both Test 1 (forecasting ‘ahead’ for July to December 2015) and Test 2 datasets.
This shows the improvement in both the BN and regression model with the addition of the
geospatial correction node. It can be seen that the saturated BN provides the best representation
of the whole dataset, but that the unsaturated BN works better when forecasting ‘out-of-sample’,
under a changed injection regime.

Test 1—BN and regression model learning with observations from
Jan—June 2015, testing July-Dec 2015
RMSE MAE MAD

Linear regression — no geospatial variable 1.049  0.850 0.716
BN mean — no geospatial variable (saturated net) 1.071 0910 0.836
BN median — no geospatial variable (saturated net) 1.076  0.781 0.633
BN mean — no geospatial variable (unsaturated net) 1.022  0.827 0.695
BN median — no geospatial variable (unsaturated net) 1.054 0.697 0.519
Linear regression — with geospatial variable 0.871  0.705 0.578
BN mean estimate (saturated net) — with geospatial variable 0914  0.737 0.642
BN median estimate (saturated net) — with geospatial variable 0.894 0.613 0.519

BN mean estimate (unsaturated net) — with geospatial variable 0.842 0.615 0.424
BN median estimate (unsaturated net) — with geospatial variable 0.861  0.526 0.234

Test 2—Ilearning with 90 % of dataset, testing with 10%
(randomly selected from Jan 2011-Dec 2015)
RMSE MAE MAD

Linear regression — no geospatial variable 0.947  0.778 0.698
BN mean — no geospatial variable (saturated net) 0922  0.738 0.597
BN median — no geospatial variable (saturated net) 1.009  0.649 0.401
Linear regression — with geospatial variable 0.786  0.632 0.520
BN mean estimate (saturated net) — with geospatial variable 0.733  0.554 0.425
BN median estimate (saturated net) — with geospatial variable 0.756 0475 0.232
BN mean estimate (unsaturated net) — with geospatial variable 0.797  0.578 0.423

BN median estimate (unsaturated net) — with geospatial variable 0.842  0.530 0.295
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Table S7: Empirical and BN unconditional rank correlations for /mom_1y calculated using
preliminary injection data from January 2011 to September 2016 | Compare with correla-
tions for January 2011 to December 2015 shown in Table S5.

Empirical Unsaturated BN Saturated BN

Depth 0.23 0.19 0.19
Depth rel. basement -0.17 -0.13 -0.13
Distance to basement -0.35 -0.34 -0.34
Volume 0.18 0.1 0.19
Volume 1 year 0.2 0.1 0.22
Cumulative volume 0.23 0.11 0.24
Geospatial correction -0.59 -0.46 0.57
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